Scienza delle Costruzioni

Paolo Casini

Dipartimento di Ingegneria Strutturale e Geotecnica Università di Roma *La Sapienza*

E-mail: <u>p.casini@uniroma1.it</u> pagina web: <u>www.pcasini.it/disg/sdc</u>

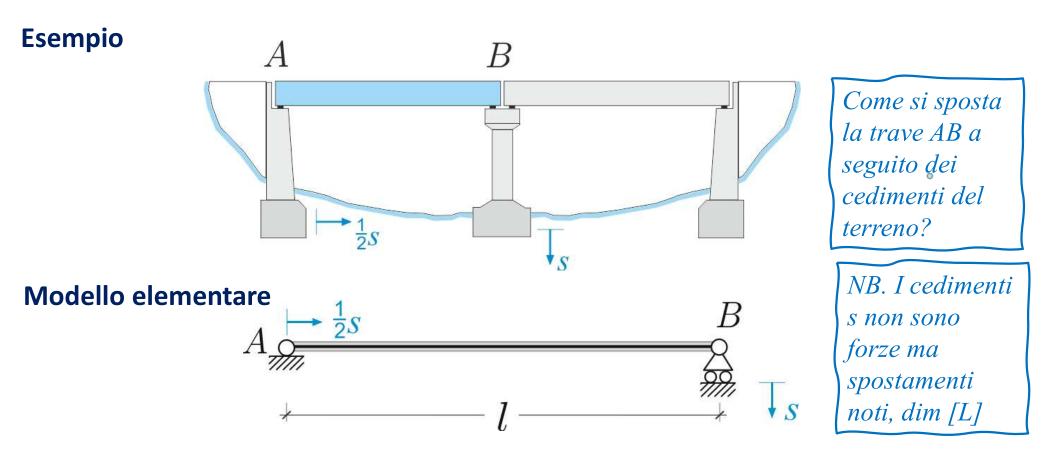
Testo di riferimento:

Paolo Casini, Marcello Vasta. *Scienza delle Costruzioni*, CittàStudi DeAgostini, 4° Edizione, 2020

Parte I - Il modello di corpo rigido 2. Statica del corpo rigido

- Obiettivi
- Modello delle forze esterne
 - forza concentrata, momento di una forza
 - sistemi di forze
 - forze distribuite
- I vincoli: prestazioni statiche
- Equazioni cardinali della statica
- Il problema statico
- Classificazione statica
- **Esercizi** (sito: E01-E03, testo: §2.7-2.8)

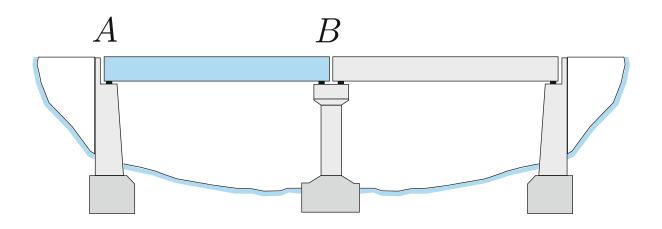
1. Cinematica del corpo rigido: problema cinematico



Posizione del problema in generale

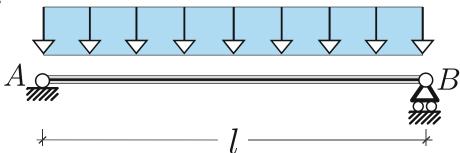
Sia dato un sistema di n_C ($n_C \ge 1$) corpi rigidi vincolati e sia C la configurazione occupata dal sistema. Supponiamo che uno o più vincoli subiscano un cedimento assegnato, il problema cinematico consiste nel determinare, se esiste, la nuova configurazione C' occupata dal sistema a seguito dei cedimenti

Esempio



Che reazioni devono erogare i vincoli affinché la trave AB sia in equilibrio?

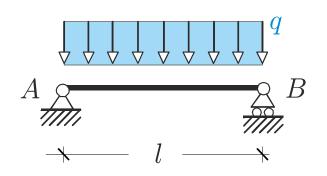
Modello elementare



Posizione del problema in generale

Sia dato un sistema di n_C ($n_C \ge 1$) corpi rigidi vincolati soggetto ad assegnate forze esterne attive e sia C la configurazione occupata dal sistema. Il problema statico consiste nel determinare, se esistono, le forze esterne reattive (reazioni vincolari) che devono erogare i vincoli affinché il sistema sia in equilibrio.

Formulazione analitica



Numero di g.d.l
$$n = 3n_C = 3$$

Vincoli semplici
$$m = 2 + 1 = 3$$

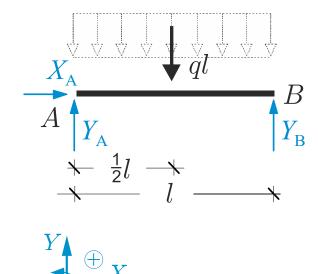
Esempio

La trave in figura è in equilibrio sotto un carico distribuito costante q noto, diretto come in figura. Determinare le reazioni vincolari erogate dai vincoli. Discutere l'esistenza della soluzione e il numero di soluzioni.

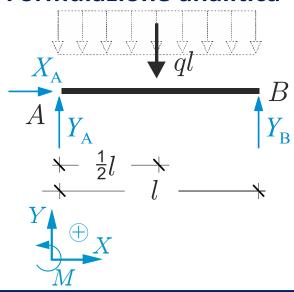
Dati: luce l, carico q (Ad es. l=2m, $q=1~\mathrm{kN/m}$)

Procedura operativa

- 1. Si fissa un sistema di riferimento globale e le convenzioni per forze e momenti.
- 2. Si sostituiscono ai vincoli le reazioni vincolari (incognite) che essi sono in grado di erogare. Se sono presenti forze attive distribuite si riducono ad al sistema equivalente costituito dalla sola risultante



Formulazione analitica

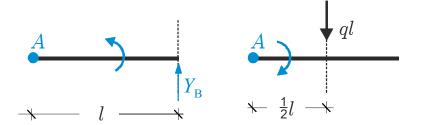


$$\mathbf{f}_r = \begin{bmatrix} X_A \\ Y_A \\ Y_B \end{bmatrix}$$

Procedura operativa

- 3. Si individuano le incognite (reazioni $\mathbf{f_r} = egin{array}{c} X_A & \text{vincolari) eventualmente raccolte in} \\ \mathbf{f_r} = egin{array}{c} Y_A & \text{un vettore } \mathbf{f_r} \\ Y_B & 4. & \text{Si sceglie un polo rispetto al quale} \end{array}$ vincolari) eventualmente raccolte in
 - calcolare i momenti.

$$\begin{cases} \sum X = 0 \\ \sum Y = 0 \\ \sum M_A = 0 \end{cases} \Rightarrow \begin{cases} X_A = 0 \\ X_A = 0 \end{cases}$$



Procedura operativa

5. Si esplicitano le equazioni cardinali della statica in forma scalare rispettando le convenzioni scelte

$$\begin{cases} X_A = 0 \\ Y_A + Y_B - ql = 0 \\ Y_B l - \frac{1}{2}ql^2 = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & l \end{bmatrix} \begin{bmatrix} X_A \\ Y_A \\ Y_B \end{bmatrix} + \begin{bmatrix} 0 \\ -ql \\ -\frac{1}{2}ql^2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Procedura operativa

 $\begin{cases} X_A = 0 \\ Y_A + Y_B - ql = 0 \\ Y_B l - \frac{1}{2}ql^2 = 0 \end{cases} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & l \end{bmatrix} \begin{bmatrix} X_A \\ Y_A \\ Y_B \end{bmatrix} + \begin{bmatrix} 0 \\ -ql \\ -\frac{1}{2}ql^2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ 6. SI scrive II sistemu precedence in forma scalare e matriciale, e si discute l'esistenza e il numero di soluzioni (Rouchénumero di soluzioni (Rouché-Capelli)

Numero di g.d.l
$$n=3n_C=3$$
 Numero di equazioni $n=3$
Vincoli semplici $m=2+1=3$ Numero di incognite $m=3$

$$\mathbf{Bf}_r + \mathbf{f}_a = \mathbf{0}$$

Problema cinematico sulla stessa struttura

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & l \end{bmatrix} \begin{bmatrix} u_A \\ v_A \\ \theta \end{bmatrix} = \begin{bmatrix} \frac{1}{2}s \\ 0 \\ -s \end{bmatrix}$$

$$\mathbf{A} \qquad \mathbf{Q} \qquad \mathbf{S}$$

$$\mathbf{A} = \mathbf{B}^T$$

Numero di g.d.l
$$n=3n_C=3$$
 Numero di equazioni $m=3$
Vincoli semplici $m=2+1=3$ Numero di incognite $n=3$

$$Aq = s$$

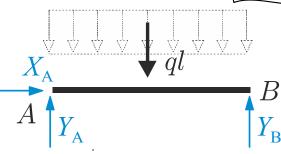
Soluzione

$$\begin{cases} X_A = 0 \\ Y_A + Y_B - ql = 0 \\ Y_B l - ql \cdot \frac{1}{2} l = 0 \end{cases}$$

$$X_A = 0$$

$$Y_B = \frac{1}{2}ql$$

$$Y_A = \frac{1}{2}ql$$



Procedura operativa

7. Se la soluzione esiste ed è unica, si ricavano le reazioni vincolari incognite risolvendo il sistema.

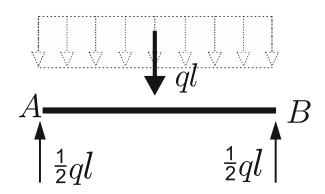


Diagramma di struttura libera

Procedura operativa

8. Si ridisegna la struttura con le reazioni vincolari note ottenute nel punto precedente ottenendo il diagramma di struttura libera

Formulazione analitica: caso generale

$$\mathbf{Bf_r} + \mathbf{f}_a = \mathbf{0}$$

Anche nei casi generali ci si riconduce ad un sistema algebrico costituito da **n equazioni lineari** in **m incognite**, dove m è il numero dei vincoli semplici (esterni e interni) e n il numero di gradi di libertà del sistema.

 \mathbf{f}_{r} : vettore colonna delle reazioni vincolari (**incognito**)

 $(m \times 1)$

B: matrice dei coefficienti del sistema detta **Matrice Statica** (nota)

 $(n \times m)$

 \mathbf{f}_{σ} : vettore dei termini noti detto vettore delle forze attive (noto)

 $(n \times 1)$

Numero di g.d.l: $n = 3n_C$

Numero di vincoli semplici: m

Esistenza della soluzione f_r ? Numero di soluzioni?

Classificazione Statica

DUALITA' STATICO-CINEMATICA

I due problemi cinematico e statico sono, dal punto di vista meccanico, completamente diversi. Dal punto di vista analitico sono ricondotti a sistemi di equazioni lineari con matrici dei coefficienti $\bf A$ (matrice cinematica) e $\bf B$ (matrice statica).

Le matrici cinematica e statica dipendono esclusivamente dalla geometria della struttura e dalla disposizione/tipologia dei vincoli.

Si può dimostrare in generale che se si sceglie lo stesso polo nei due problemi, le due matrici sono una la trasposta dell'altra: hanno quindi lo stesso rango e, se quadrate, lo stesso determinante.

A: Matrice Cinematica matrice dei coefficienti del sistema che governa il prob. cinem. $(m \times n)$

B: Matrice Statica matrice dei coefficienti del sistema che governa il prob. statico $(n \times m)$

Numero di g.d.l: $n = 3n_C$ Numero di vincoli semplici: m

$$\mathbf{A} = \mathbf{B}^T$$

2. Statica del corpo rigido: classificazione statica

I. Sistemi determinati (isostatici)

$$n = m = p$$

$$\det \mathbf{B} \neq 0$$

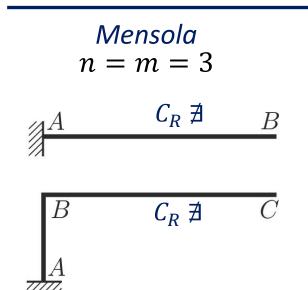
$$\exists ! \mathbf{f}_r : \mathbf{f}_r = -\mathbf{B}^{-1} \mathbf{f}_a$$

$$\mathbf{f}_a = \mathbf{0} \Rightarrow \mathbf{f}_r = -\mathbf{B}^{-1}\mathbf{0} = \mathbf{0}$$

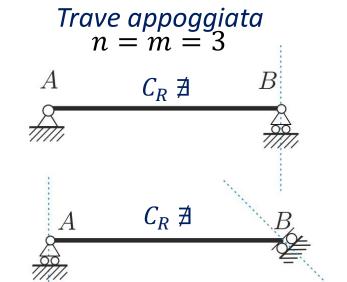
La soluzione esiste ed è unica (Rouché-Capelli).

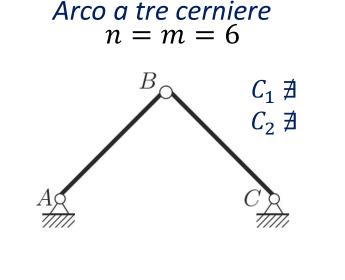
In assenza di forze esterne attive, l'unica soluzione è quella banale $\mathbf{f}_r = \mathbf{0}$: i vincoli non erogano reazioni vincolari.

Essendo $\mathbf{A} = \mathbf{B}^T$ i sistemi isostatici sono anche isocinematici



Numero di g.d.l: $n = 3n_C$





Numero di vincoli semplici: m

Rango **B**: p

SAPIENZA 2. Statica del corpo rigido: classificazione statica

II. Sistemi degeneri (singolari)

$$n = m > p$$

$$\det \mathbf{B} = 0$$

$$\nexists \mathbf{f}_r$$

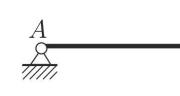
Salvo particolari distribuzioni di forze attive, **non esistono soluzioni** (Rouché-Capelli).

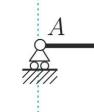
Salvo particolari distribuzioni di forze attive, in generale i vincoli non sono in grado di erogare reazioni che equilibrano le forze esterne attive.

Essendo $\mathbf{A} = \mathbf{B}^T$ i sistemi staticamente degeneri lo sono anche cinematicamente.

Trave appoggiata degenere
$$n = m = 3$$

Arco a tre cerniere degenere n = m = 6







SAPIENZA 2. Statica del corpo rigido: classificazione statica

III. Sistemi staticamente indeterminati

(iperstatici)

$$p = n < m$$

B

$$\exists \infty^{m-n} \mathbf{f}_r$$

Grado di iperstaticità I = m - n

Esistono ∞^{m-n} soluzioni (Rouché-Capelli).

Non è possibile determinare in modo univoco le reazioni erogate dai vincoli in condizioni di equilibrio.

Essendo $\mathbf{A} = \mathbf{B}^T$ i sistemi iperstatici sono anche cinematicamente impossibili

Trave incastro appoggio

$$n = 3 m = 4$$

Trave doppiamente incastrata

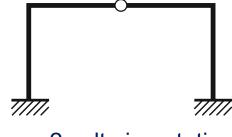
$$n = 3 m = 6$$

Portale incastrato

$$n = 6 m = 8$$

1 volta iperstatico

3 volte iperstatico



2 volte iperstatico

SAPIENZA 2. Statica del corpo rigido: classificazione statica

IV. Sistemi staticamente impossibili

B

(labili)

$$p = m < n$$

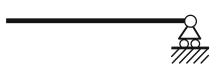
 $\not\exists \mathbf{f}_r$

Salvo particolari distribuzioni di forze attive, **non esistono soluzioni** (Rouché-Capelli).

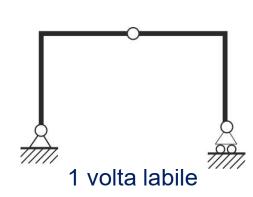
Salvo particolari distribuzioni di forze attive, in generale i vincoli non sono in grado di erogare reazioni che equilibrano le forze esterne attive.

Essendo $\mathbf{A} = \mathbf{B}^T$ i sistemi staticamente impossibili lo sono anche cinematicamente indeterminati (labili)

$$n = 3 m = 1$$



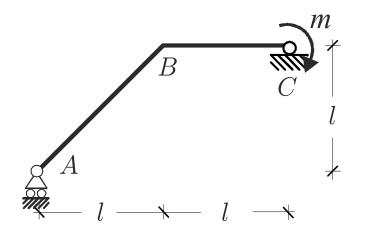
2 volte labile



n = 6 m = 5

SAPIENZA 2. Statica del corpo rigido: esercizio

Esercizio

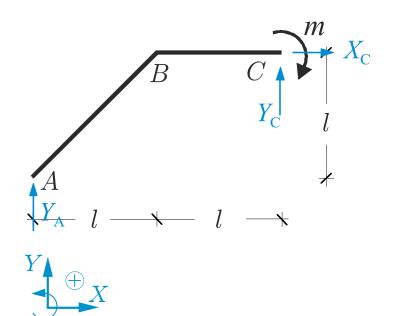


Numero di g.d.l $n = 3n_C = 3$

Vincoli semplici m = 2 + 1 = 3

La struttura in figura è soggetta ad una coppia di forze m nota, diretta come in figura. Verificato che la struttura è isostatica, determinare le reazioni vincolari erogate dai vincoli.

Dati: luce l, coppia m (Ad es. l = 2m, $m = 1 \text{ kN} \cdot \text{m}$)

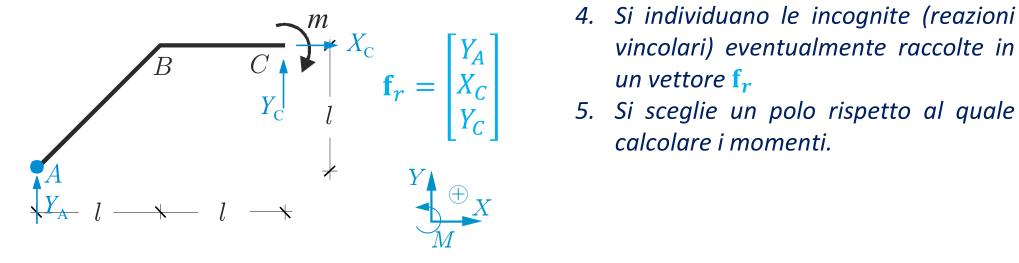


Procedura operativa

- 1. Si verifica l'isostaticità
- 2. Si fissa un sistema di riferimento globale e le convenzioni per forze e momenti.
- 3. Si sostituiscono ai vincoli le reazioni vincolari (incognite) che essi sono in grado di erogare. Se sono presenti forze attive distribuite si riducono ad al sistema equivalente costituito

SAPIENZA 2. Statica del corpo rigido: esercizio

Formulazione analitica



Procedura operativa

- 4. Si individuano le incognite (reazioni
- calcolare i momenti.

$$\begin{cases} \sum X = 0 \\ \sum Y = 0 \\ \sum M_A = 0 \end{cases} \Rightarrow \begin{cases} X_C = 0 \\ Y_A + Y_C = 0 \\ Y_C \cdot 2l - X_C \cdot l - m = 0 \end{cases}$$

Procedura operativa

6. Si esplicitano le equazioni cardinali della statica in forma scalare rispettando le convenzioni scelte

SAPIENZA 2. Statica del corpo rigido: problema statico

Soluzione

$$\begin{cases} X_C = 0 \\ Y_A + Y_C = 0 \end{cases} \qquad X_C = 0 \qquad Y_C = \frac{m}{2l} \qquad Y_A = -\frac{m}{2l}$$

$$Y_C \cdot 2l - X_C \cdot l - m = 0$$

$$R = 0 \qquad R \qquad R$$

$$R = 0 \qquad Y_C = \frac{m}{2l} \qquad Y_A = -\frac{m}{2l} \qquad X_C$$

$$R = 0 \qquad Y_C = \frac{m}{2l} \qquad Y_A = -\frac{m}{2l} \qquad X_C$$

Procedura operativa

7. Se la soluzione esiste ed è unica, si ricavano le reazioni vincolari incognite risolvendo il sistema.

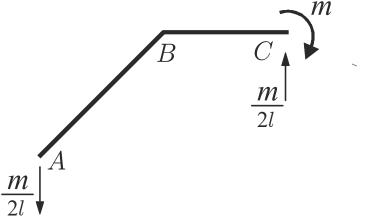


Diagramma di struttura libera

Procedura operativa

8. Si ridisegna la struttura con le reazioni vincolari note ottenute nel punto precedente ottenendo il diagramma di struttura libera

SAPIENZA 2. Statica del corpo rigido: esercizio

$$\begin{cases} X_C = 0 \\ Y_A + Y_C = 0 \\ Y_C \cdot 2l - X_C \cdot l - m = 0 \end{cases}$$

$$\begin{cases} X_{C} = 0 \\ Y_{A} + Y_{C} = 0 \\ Y_{C} \cdot 2l - X_{C} \cdot l - m = 0 \end{cases} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -l & 2l \end{bmatrix} \begin{bmatrix} Y_{A} \\ X_{C} \\ Y_{C} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -m \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$B \qquad \mathbf{f}_{r} \qquad \mathbf{f}_{a} \qquad \mathbf{0}$$

$$Procedura operativa$$

$$precedente in forma scalare e matriciale, e si discute l'esistenza e il numero di soluzioni$$

Procedura operativa

di soluzioni numero (Rouché-Capelli)

Numero di g.d.l
$$n=3n_{C}=3$$
 Numero di equazioni $n=3$
Vincoli semplici $m=2+1=3$ Numero di incognite $m=3$

$$\mathbf{Bf_r} + \mathbf{f}_a = \mathbf{0}$$

Problema cinematico sulla stessa struttura (cfr. lezioni precedenti)

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -l \\ 0 & 1 & 2l \end{bmatrix} \qquad \begin{array}{c} n = m \\ \det \mathbf{A} \neq 0 \end{array}$$

$$A = B^T$$

SAPIENZA 2. Statica del corpo rigido: esercizi (lavagna)

Esercizi Per ciascuna delle strutture seguenti: a) dimostrarne l'isostaticità; b) determinare le reazioni vincolari e disegnare il diagramma di struttura libera.

