

## INSEGNAMENTO DI SCIENZA DELLE COSTRUZIONI

a.a. 2020-2021 prof. Paolo Casini

## Prova d'esonero del 21.12.2020

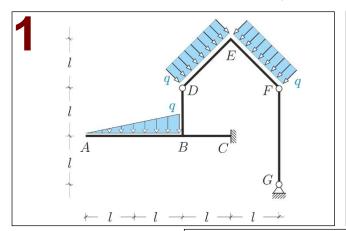
**Problema 1.** Con riferimento alla *struttura isostatica* riportata in Fig. 1 si chiede di: **a)** verificarne sinteticamente l'isostaticità; **b)** determinare le reazioni vincolari e tracciare i diagrammi delle caratteristiche della sollecitazione.

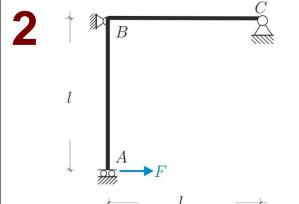
**Problema 2.** Studiare la struttura iperstatica di Fig. **2** facendo uso del *metodo degli spostamenti*. **a**) Scrivere le equazioni della linea elastica per ciascuno dei tratti e fornire la soluzione generale. **b**) Scrivere le condizioni al contorno necessarie a determinare la soluzione particolare. **c**) (*facoltativo*) Calcolare tutte le costanti d'integrazione. **d**) (*facoltativo*) Fornire le espressioni analitiche delle caratteristiche della sollecitazione in ogni tratto e tracciare i relativi diagrammi. **e**) (*facoltativo*) Disegnare qualitativamente la deformata della struttura.

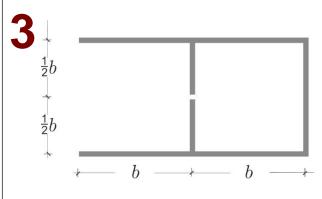
Si assumano le travi indeformabili a taglio, con rigidezze EA e EI uniformi. (Assumere:  $EA = EI/l^2$ ).

**Problema 3.** Si consideri il problema della *flessione e taglio* (flessione non uniforme) in un cilindro di Saint Venant la cui sezione è riportata in Fig. **3.** Applicando la teoria approssimata di Jourawsky: **a)** studiare l'andamento delle tensioni tangenziali dovute ad una forza di taglio *perpendicolare* all'asse di simmetria x; **b)** determinare la posizione del centro di taglio. **c)** (*facoltativo*) Determinare la posizione del baricentro e l'inerzia torsionale della sezione.

La sezione è sottile con spessore costante s e  $I_x = \frac{7}{6}sb^3$ .

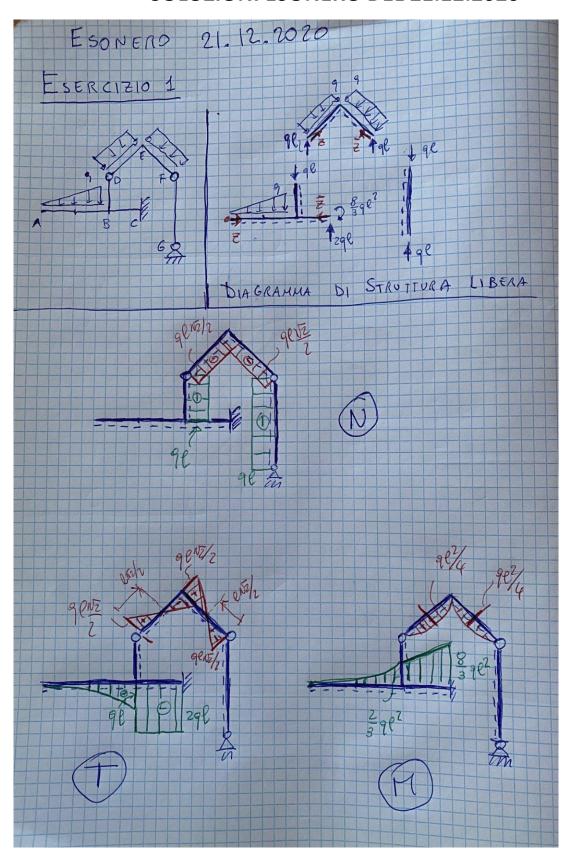


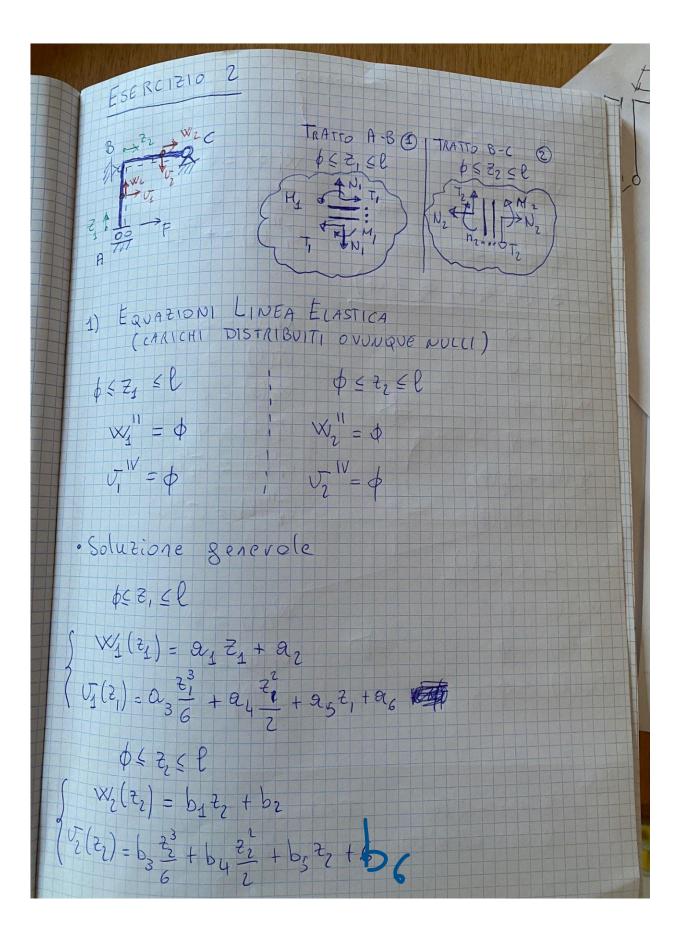




|         | <u>Lasciare libero questo spazio</u> |
|---------|--------------------------------------|
| COGNOME |                                      |
| NOME    |                                      |

## **SOLUZIONI ESONERO DEL 21.12.2020**





2) CONDITIONI AL GOTORDO

• in A (
$$\overline{z}_{1} = \phi$$
)

• in B ( $\overline{z}_{1} = \phi$ )

• in B ( $\overline{B}_{1} = \overline{z}_{2} = \phi$ )

• in B ( $\overline{B}_{2} = \overline{z}_{2} = \phi$ )

• in B ( $\overline{B}_{3} = \overline{z}_{2} = \phi$ )

• in B ( $\overline{B}_{4} = \overline{z}_{3} = \overline{z}_{4} = \phi$ )

• in B ( $\overline{B}_{4} = \overline{z}_{3} = \overline{z}_{4} = \phi$ )

• in B ( $\overline{B}_{4} = \overline{z}_{3} = \overline{z}_{4} = \phi$ )

• in B ( $\overline{B}_{4} = \overline{z}_{3} = \overline{z}_{4} = \phi$ )

• in B ( $\overline{B}_{4} = \overline{z}_{3} = \overline{z}_{4} = \phi$ )

• in B ( $\overline{B}_{4} = \overline{z}_{3} = \overline{z}_{4} = \phi$ )

• in B ( $\overline{B}_{4} = \overline{z}_{3} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{2} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{2} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{2} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z}_{4} = \overline{z}_{4} = \overline{z}_{4} = \phi$ )

• in C ( $\overline{z$ 

